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Abstract

An extended maximum likelihood principle is described by which inverse solutions for problems with uncertainties
in known model parameters can be treated. The method introduces the concept of an equivalent experimental noise
which di�ers signi®cantly from the measurement noise when the system response is sensitive to the uncertainties in
the known parameters. When the equivalent noise varies smoothly and signi®cantly over the range of uncertainty,

the inverse solution tends to be independent of the uncertainties. By minimizing the equivalent noise through
appropriate choice of a measurement protocol, an optimal experiment can be de®ned. Examples are given of
designing an experiment for estimating conductivity and contact resistance when surface convective coe�cients are

uncertain. 7 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

The parameters of the model of a system are usually

determined by using the inverse method which consists
of comparing the measured response of the system to

the response predicted with varying values of the

sought-after parameters. The predictions are made by

using the model with properties and parameters, other
than the sought-after parameters, assumed to be

known. Although existing inverse methods consider the

experimental noise, they do not take into account
errors or uncertainties which might exist in these pre-

sumably known parameters of the system. The authors

have presented previously [1] a new measure of per-

formance which takes into account such uncertainties

in the known model parameters by extending the con-
cept of the maximum likelihood principle.
In this paper, we continue the development of this

extended theory to demonstrate its improved perform-
ance and its use in optimal experiment design.
Examples are given to investigate the consequences of

applying it to sensors which are located at optimal and
non-optimal positions or to take readings at times of
less than maximum information.

2. Theory

Following [1], let us consider a thermal system
which can be modeled by a set of di�erential equations
and model parameters. Of all the parameters involved

in the model, let there be P unknown parameters rep-
resented by the vector u which are to be determined by
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the inverse method. The rest of the parameters, say Q

parameters, are known a priori and are represented by
the vector b. In order to estimate the u parameters, ex-
perimental observations of the state of system are

obtained at various locations �x i, yi� and times �tk).
Let N be the number of sensors used in the experiment
and K the number of readings in time at these sensor
locations. Then the experimental observations can be

represented by zk where,

zT
k �

�
zi�tk �, i � 1, 2, . . . ,N

	
k � 1, 2, . . . ,K �1�

Let FFFk be a vector of the predicted state of the system

at all the sensor locations based on the mathematical
model using known the parameters (for distributed par-
ameter systems, this involves the solution of the ®eld

equations) such that,

FFFT
k �

�
fi�tk �, i � 1, 2, . . . ,N

	
k � 1, 2, . . . ,K �2�

The idea is to choose the sought-after parameters, u, in

such a way that the model predictions agree with the
experimental measurements according to a speci®ed
functional [1±3].

The vector z in Eq. (1) results from real measure-
ments, and therefore, always contains errors. The total
error is composed of systematic (bias) and random

components. The complete analysis of the sources of
individual error components is a separate and compli-
cated problem. It is important to note here that state-

of-the-art methods and devices used for temperature

measurement provide a rather low level of systematic
error due to suitable design and manufacturing
methods. In some cases, for example, when the sensor

location or starting time is not known precisely, it is
possible, by comparing model computations to the ex-
perimental results, to estimate the systematic error and
to include the necessary correction into the measured

results [4,5]. However, as pointed out by Mo�at [5],
such corrections invariably depend upon the judgement
of the experimentalist. In the development that follows,

we will restrict the analysis to cases where the tempera-
ture measurement errors contain only the random
component dz:

dzT
k �

�
dzi�tk �, i � 1, 2, . . . ,N

	
k � 1, 2, . . . ,K �3�

where dzi � zi ÿ E�zi �:
The usual deterministic approach is to minimize the

least squares di�erence between the prediction and the
measurements [3].

L� �
XK
k�1
fFFFk ÿ zkgTfFFFk ÿ zk g �4�

In this approach, no information about dz, other than
having a zero mean, is utilized. Because inverse pro-

blems are poorly posed, the search for the minimum
value of L� is complicated. A number of papers have
described optimal mathematical techniques (often

Nomenclature

b known parameter vector
Cov[ ] covariance operator
E[ ] expected value operator

f probability density function
F Fisher information matrix
G covariance matrix of known parameters

h heat transfer coe�cient
I identity matrix
I information

k thermal conductivity
K number of observation times
L likelihood functional
M proposed Fisher information matrix

N number of sensors
P number of parameters
R contact resistance

S covariance matrix of measurement noise
t time
u unknown parameter vector

Tf surface temperature of die
V covariance matrix of temperature

z measured temperature vector

Greek symbols

OOO measure of Fÿ1

FFF predicted temperature vector
CCC discrepancy between prediction and

measurement vector
sh standard deviation of h
sn standard deviation of measurements

YYY sensitivity matrix of the state of the system
to b

Subscripts

i, j sensors
k time
l, m parameters

s substrate

Superscript

T transpose
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referred to as regularization) for determining the mini-
mum and criteria for terminating the search [6]. In

multi-parameter problems, we terminate the search
according to the residual criterion [2].

L��u�R
XK
k�1

dzT
kdzk �5�

Eq. (4) can formally be treated as a regression exper-
iment whose purpose is the estimation of u. Since the
solution of the inverse problem, as expressed by Eq.

(4), is not unique, i.e. generally speaking, a minimum
of L� can be obtained under various realizations of the
experimental conditions and measuring schemes, the

problem naturally arises of improving the compu-
tational properties of the inverse problem by an opti-
mally designed experiment. Optimal experiment design

problems for systems described by partial di�erential
equations were investigated in [7]. There only linear
problems were analyzed, and the optimal design was
chosen as that experiment which minimizes the vari-

ance of the estimated parameter.

3. Maximum likelihood

In solving inverse problems, it seems reasonable to
use a criterion which re¯ects the statistical information
available on the errors dz: The theory with which we

shall be concerned in this paper has its origins in a
paper by Cherno� [8]. During the last 30 years, it was
pursued vigorously by Fedorov [7], Box and Lucas [9],

Goodwin and Payne [10] and Silvey [11]. The exper-
imental measurements of the state of the system zk are
considered to be random in nature and the measure-
ment errors are assumed to be independent of each

other and normally distributed with a zero mean and a
variance of s 2

n :
If the likelihood is given by a Gaussian probability

distribution [10]

f�CCCju� �
"
�2p�NK

YK
k�1

Det�Sk �
#ÿ1=2

exp

"XK
k�1

ÿ 1

2
CCCk�u�TSÿ1k CCCk�u�

#
�6�

then maximizing the likelihood is equivalent to mini-
mizing

L �
XK
k�1

ln�Det�Sk �� �
XK
k�1

CCCk�u�TSÿ1k CCCk�u� �7�

in which CCCk � FFFk ÿ zk and the covariance matrix Sk

re¯ects the variance of the experimental measurements.

If Sk is considered to be constant with respect to time
and diagonal, i.e, Sk � s 2

n I, L � L� and the maximum

likelihood and least squares approaches are identical.
According to the Cramer±Rao theorem [10,12], the

estimation error has a lower bound of Fÿ1 where F is

the P � P Fisher Information matrix. If the signal
noise is not a function of the sought-after parameter,
the elements of F can be expressed by [13]

�F�lm�
XK
k�1

"�
@FFFk

@um

�T

Sÿ1k

�
@FFFk

@ul

�#
l, m � 1, . . . ,P �8�

An optimal experimental protocol can be devised by
choosing the experimental conditions, i.e. boundary

conditions, sensor location, etc., which minimize a
measure OOO of Fÿ1. When only one parameter is being
sought, F reduces to a scalar. For multiple parameters,

F is a matrix and there are a variety of di�erent
measures used to characterize the estimation error.
Some of the di�erent measures are discussed by Emery

[14,15] for experiments to estimate simultaneously k
and c or k and h, respectively.
If only one parameter is being sought and if the sig-

nal noise is independent of time and has zero covari-

ance, then the lower bound for the variance of the
parameter is

s 2�u�rFÿ1 � 1=
XK
k�1

"�
@FFFk=@u

	 2
s 2
n

#
� 1=

XK
k�1

Ik�L� �9�

where Ik�L� represents the information obtained from
each reading when all other model parameters are

assumed to be known.

4. Extended maximum likelihood theory

In addition to the experimental errors, the predic-
tions will also exhibit variations which are due to the
uncertainties in the known parameters used in these

models. Thus, the predictions FFFk should also be con-
sidered to be stochastic in nature. In this extended the-
ory, the unknown parameters are estimated by

minimizing the functional J which is given as,

J �
XK
k�1

ln�Det�Vk �� �
XK
k�1

CCCk�u�TVÿ1k CCCk�u� �10�

The covariance matrix Vk is de®ned as,

Vk � E
h�
CCCk ÿ E�CCC�

	�
CCCk ÿ E�CCCk �

	T
i

� YYYkGYYYT
k � Sk �11�

where G is the covariance of the uncertain parameters
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and Y is the sensitivity of the system response with
respect to these uncertain parameters. The aspects of

the calculation of Vk are detailed in [16].
It can be shown that the Information matrix, M, for

the extended theory given in Eq. (10) is

�M�lm�
XK
k�1

"�
@FFFk

@um

�T

Vÿ1k

�
@FFFk

@ul

�

� 1

2
Tr

�
Vÿ1k

@Vk

@ul
Vÿ1k

@Vk

@um

�#
l, m � 1, . . . ,P

�12�

It is important to note that since M involves the com-
plicated dependence of Vk upon the sought-after par-

ameters, the location of the maximum of M is a highly
non-linear optimization problem.
In many of the cases we have studied, M is only

weakly a�ected by the trace term. In this situation, a
comparison of Eqs. (8) and (12) suggests that Vk can
be considered as the equivalent noise of the experiment.
For only one sought-after parameter, one uncertain

parameter, and one sensor, we ®nd

s 2�u�rMÿ1 � 1=
XK
k�1

24 �
@fk=@u

	 2
s 2
n �

ÿ
@fk=@b

� 2s 2
b

35
� 1=

XK
k�1

Ik�J� �13�

where Ik�J� represents the information obtained at

each reading when some of the model parameters are
uncertain. Even if the signal noise is independent of
time, the equivalent noise is a strong function of time

through the term @fk=@b:
The information, I�J� is usually less than I�L�

because VkrSk: Attempts to increase the total amount

of information by improving the measurement accu-
racy (i.e. reducing sn� are usually ine�ective because
the term �@fk=@b�sb is the dominant component of Vk:
The algorithm for determining the optimal exper-

iment is as follows:

1. Solve the direct problem for FFF:
2. Solve the corresponding sensitivity problem for YYY:
3. Estimate the covariance matrix G which de®nes the

uncertainty of the a priori known parameters.
4. Choose an initial set of experimental conditions

(sensor location, sampling times, starting times,
etc.).

5. Determine the maximum value of M, subject to con-

straints on the experimental conditions.

If the elements of the information matrix M are inde-
pendent of the sought-after parameter vector, u, the

extremum problem Eq. (10) can be solved without any
information on u. This situation, however, is seldom

found in thermal studies. Therefore, only the construc-
tion of locally optimal experiments is possible [7]. It is
necessary to use a priori information on u as a starting

point in an iterative process. As discussed in [15], it is
di�cult to frequently obtain a global minimum with-
out careful visualization of the functional.

5. Example I

For the ®rst example, let us estimate the conduc-
tivity of a homogenous material. This will be done by
sampling the temperature of a one-dimensional slab.

The slab is of thickness L � 0:04 m, has conductivity
k � 1:0 W/(m 8C) and volumetric heat capacity rc �
1:0� 106 J/(m3 8C). It is initially at 08C temperature,

Fig. 1. (a) Values of the Fisher information matrix as a func-

tion of total experiment time (Fo ) and sensor location (x/L ).

(b) Variation of L with conductivity for a sensor at x � L,

total experiment time (Fo ) of 0.625 and 0.1% noise.
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has a convective heat transfer coe�cient of h0 � 5 W/

(m2 8C) at x � 0 and hL � 20 W/(m2 8C) at x � L, and
is immersed in a ¯uid with a temperature 10008C at
time zero. The temperature is measured at a ®xed lo-

cation at 10 equally spaced times over the duration of
the experiment. The experimental temperatures are
taken to be the analytical temperatures based upon

a conductivity of k � 1 W/(m 8C), corrupted by
a Gaussian noise with zero mean and a standard

deviation, sn of 18, which corresponds to 0.1% of the
maximum temperature.
Let us also consider that the information avail-

able on the heat transfer coe�cient at x � L is not
accurate and that its value is distributed about the

mean value hL � 20 with a standard deviation of
sh:
The measured temperatures will be compared to the

analytical temperatures which are computed with
di�erent values of conductivity, k. The measured and
computed temperatures will be substituted into Eq. (7)

and the values of L computed. That k for which L is a
minimum is the estimated conductivity. In general, the

location of the minimum when several measurement
variables (e.g. sensor locations for multiple sensors) are
adjustable requires fairly sophisticated search tech-

niques or regularization. In this example where the op-
timal design involves only the speci®cation of the
location of one sensor, a direct line search is su�cient.

First, it is necessary to determine the optimal sensor
location. Fig. 1a shows the values of F, the infor-

mation content of the experiment, as a function of
maximum experiment time and sensor location. Refer-
ring to Eq. (9), the reciprocal of F is a measure of the

variance of the conductivity, i.e. the uncertainty in the
conductivity estimated from the inverse process. Since

the variation in F is a direct function of the sensitivity
of the measured temperature to the conductivity, it is,
as intuitively expected, highest at x � L where the heat

¯ow is the greatest. Surprisingly, it also has a local
maximum near x � 0:3 where the two heat ¯ows are
opposed and tend to raise the temperature. For this ex-

periment, the optimal sensor location is at x � L: The
value of F at x � L indicates that there will be an

uncertainty in the estimated value of k of about
sk=k10:4% or about four times the standard devi-
ation of the average signal noise.

If one of the known parameters used in computing
the analytical temperatures, say hL, is uncertain, then
the logical approach would be to repeat the process

for di�erent values of hL: Fig. 1b illustrates the
behavior of L for di�erent values of hL for a sensor at

x � L:
The estimated conductivities are those which mini-

mize L. From Fig. 1b, it is clear that our estimate of k

is strongly sensitive to the value of hL assumed, and it
is clear that small errors in specifying the surface heat

transfer coe�cient will lead to large errors in the esti-
mated conductivity.

In this case of uncertainty in the known parameters,
it would appear reasonable to apply the extended the-
ory and to use the value of J, Eq. (10). Fig. 2 shows

the estimated conductivities found by using J, and it is
seen that the extended theory does not perform any
better than the original theory, L.

The fallacy in this approach is that the sensor lo-
cation is not optimal when there is uncertainty in hL:
If the extended theory, J, is to be used, one must also

determine the optimal position based upon M, not F.
Fig. 3a shows the values of M as a function of sensor
location for di�erent degrees of uncertainty in hL:
Although the temperature is most sensitive to conduc-

tivity at x � L (and thus the high value of F there), the
increase in uncertainty in the estimated conductivity
due to the dependence of the temperature on hL is also

the highest there. The e�ect is to reduce the infor-
mation value of readings made there and to increase
the standard deviation of the estimated k. At 2.5%

uncertainty in hL, the optimal position is in the in-
terior. As the uncertainty in hL increases, the optimal
position moves towards x � 0, since the temperatures

there is least a�ected by hL:
Using a sensor at x � 0 and estimating the conduc-

tivity using J, gives the results shown in Fig. 3b by the
curve marked. (The curve marked L will be discussed

in the next paragraph.) We see that using the extended
theory with measurements at the optimal location
gives excellent results even when the value of hL used

is far from correct. Fig. 3c shows how J behaves with
hL: It is clear that the minimum points are coincident
in terms of k and that accuracy in the value of hL is

not needed. At this point, we do not understand why
the curves lose their smoothness away from the mini-

Fig. 2. Estimated conductivity using L and J for a sensor at

x � L, for a total experiment time (Fo ) of 0.625, 0.1% noise

and 10% uncertainty in hL:
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mum point, but in all the cases we have studied, they
are su�ciently smooth near the minimum to permit us
to estimate the conductivity.
A logical question to ask when estimating k is why

not simply put the sensor at a point where we think
that the imprecision in hL has minimal e�ect and to
use the regular approach, i.e, L. This would save us

from the computation of @fk=@b: Such a point would
be at x � 0, far from the surface where hL most
strongly a�ects the temperature. Fig. 3b shows the

result of this approach. The conductivities determined
from L still vary strongly with hL and the correct
result is obtained only when the precise value of hL is
used. The reasons for this are twofold. First, the infor-

mation obtained at x � 0 is small as illustrated in Figs.
1 and 3a. Second, the temperature, and thus L, are
still reasonably strong functions of hL: Fig. 4 shows

how the ratio Vk=Sk (a direct measure of the sensitivity
of temperature to hL� varies with hL: Since J incorpor-
ates V, the e�ect of the 3:1 variation of V over the

range of hL at the optimal location is to reduce the
sensitivity of J to hL:

6. Example II

Consider an encapsulated microelectronic circuit (a
die) bonded to an alumina substrate with a contact re-

sistance R0 between the die and the substrate, Fig. 5.
The thickness of the substrate is characterized by its
thermal resistance, Rs. When powered, the die gener-

ates heat which is conducted into the substrate or con-
ducted through the encapsulation and convected into
the ambient ¯uid, whose temperature remains constant,

with a heat transfer coe�cient h0. The measured tem-
peratures will be taken as those computed with h0 and
R0, respectively, and corrupted by adding uncorrelated,

Fig. 3. (a) Values of the extended Fisher information matrix

as a function of the uncertainty in hL for a total experiment

time (Fo ) of 0.625 and 0.1% noise. (b) Estimated conductivity

using L and J for a sensor at the optimal location, x � 0, for

a total experiment time (Fo ) of 0.625, 0.1% noise, 10%

uncertainty in hL: (c) Variation of J with conductivity for a

sensor at the optiimal location, x � 0, for a total experiment

time (Fo ) of 0.625, 0.1% noise, and 10% uncertainty in hL:

Fig. 4. Comparison of Vk and Sk for the sensor at the optimal

and non-optimal locations, for a total experiment time (Fo )

of 0.625, 0.1% noise, and 10% uncertainty in hL:
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random noise, with zero mean and a standard devi-
ation of 1% of the maximum temperature of the chip.
We will estimate R by comparing the simulated

measured surface temperature Tf with those computed
using di�erent values of R and choosing that value
which minimizes either L or J. We will examine two
cases: (1) the lower surface of the substrate is insulated

and (2) the lower surface is maintained at the ambient
¯uid temperature. The properties of the di�erent ma-
terials are taken from [17] for an alumina ceramic sub-

strate �ks � 25, as � 1:7� 106� and a highly
conducting cover.
In estimating the contact resistance R, we assume

that the convective coe�cient h is not precisely known
but has an uncertainty sh: Thus, we solve for R by
assuming di�erent values of h, computing Tf and mini-

mizing either L or J. The results are sensitive to the
ratio of R0=Rs as shown in Fig. 6 for two di�erent
thermal boundary conditions at the lower surface of
the substrate. For an insulated substrate, we see that

for R0=Rs equal to 0.1 and 10 the predicted value of R
is unacceptably sensitive to our estimate of h, and if

there is any uncertainty about the value of h, we will
make a serious error in our estimate of R.

The reason for this unacceptable sensitivity can be
understood by examining the relation for the surface
temperature Tf which is given by

Tf � Qf=h �14�
where Qf is the heat transferred through the cover.
For the properties used in this example, little heat is

stored in the encapsulating cover so that Qf is essen-
tially the di�erence between the heat generated in the
die, Qd, and that which ¯ows through the attachment

to the substrate. When R is small as compared to Rs,
the heat ¯ow into the substrate is essentially indepen-
dent of R, and thus, Qf is also insensitive to h. How-

ever, from Eq. (14), it is still very sensitive to h. Thus,
L is insensitive to R but highly sensitive to h, and
therefore, h must be known precisely to extract the

correct value of R. When R is large in comparison to
Rs, essentially no heat ¯ows into the substrate, all ¯ow-
ing into the ambient ¯uid and again there is no sensi-
tivity to R and we must specify h precisely to recover

the correct value of R. However, when R and Rs are
approximately the same, then the sensitivity of Qf to R

is relatively high compared to the sensitivity to h and

the prediction is better, but still not su�ciently inde-
pendent of h to be acceptable.
When the surface of the substrate is maintained at a

®xed temperature, the heat ¯ow into the substrate is
much more sensitive to R and the estimation of R

becomes essentially independent of the value of h used
to compute FFF:

6.1. Information analysis

It is clearly advantageous to analyze the experiment
before conducting it in order to maximize the accuracy

Fig. 5. Schematic of Example II showing location of contact

resistance, R, and the substrate.

Fig. 6. Estimated values of R based on 20 samples of Tf

equally spaced in time over the period 0:35RFoR3:5:
Fig. 7. Variation of the information per reading, Ik, with

respect to time.
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of the predicted value of R. This is best done by look-
ing at the information which we can obtain from the

experiment.
Fig. 7 shows how the information varies with time

for the two di�erent boundary conditions for R0=Rs �
1: First, we see that the information for the constant
temperature boundary conditions is approximately
twice as much as the maximum information obtained

for the insulated substrate and remains essentially con-
stant at long times, even if h is uncertain. On the other
hand, when there is an uncertainty in h, the infor-

mation decreases dramatically at longer times and
readings taken shortly after the information has
peaked contribute essentially no new information.
Thus, the estimation error of R remains high.

If the value of R is extracted using J instead of L,
then we obtain the results shown in Fig. 8. Even when
readings are taken at long times, where the infor-

mation is markedly reduced, the use of J compensates
for the deleterious e�ect of an uncertain h and the pre-
dicted value of R is in error by less than 10% over a

range of h=h0 from 0.5 to 1.5.
It might appear reasonable to con®ne the sampling

to that time interval during which the information con-

tent is a maximum. This is not possible since the
method depends upon sensing the time variation of Tf ,
and if the samples are too close together, the temporal
variation will be overcomed by the noise. If we do

restrict the sampling to a range of time for which Tf

varies su�ciently, but one during which the infor-
mation content is reasonable �0:35RFoR1:5� the esti-

mation error is reduced as indicated by the second
curve labeled L in Fig. 8. However, the accuracy is no
better than that obtained using J which permits more

latitude in choosing the times at which the measure-
ments are taken.

7. Conclusions

The extended theory has been shown to be able to
account successfully for uncertainties in surface heat
transfer coe�cients when estimating conductivity and

contact resistance. Although results are presented only
for variations in hL, we have found similar results for
variations in ¯uid temperature, sensor locations, and

independent variations in hL and h0 and for problems
in which multiple parameters are estimated. We thus
conclude that this extended theory is applicable in all

cases in which some of the prescribed parameters,
whether they be properties or boundary conditions, are
uncertain. However, the success is achieved only when
the sensor is placed at the position which is de®ned as

optimal by the corresponding extended Fisher infor-
mation matrix, M.
The theory is useful only when Vk di�ers signi®-

cantly from Sk and is a strong function of the sought-
after parameters and the uncertain parameters; thus, it
cannot correct for uncertainty when the measurement

noise is high.
Since the information content of a reading is such a

strong function of the uncertain parameters and the

parameter sought, the ®rst task in designing an exper-
iment should be the determination of the information
content of the measurements in terms of the parameter
sought. Once this is known, then the experimentalist

can decide on the speci®c experiment, taking into
account the trade-o�s between information and practi-
cality. If there are no uncertain parameters, the process

is straightforward. However, in the presence of uncer-
tainty, it is important to make use of the extended in-
formation matrix and maximum likelihood function.

Doing so gives a more accurate estimate of the e�ect
of the uncertainty on the estimation error, but more
importantly provides a method for reducing the error.
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